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Spin-polarized transport in carbon nanotubes with impurities
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Abstract. Impurity effects on the spin-polarized transport through armchair carbon nanotubes contacted
by ferromagnetic leads are investigated theoretically. The length of the nanotube can cause on-resonance
and off-resonance behaviors of the spin-coherent transport. The impurity suppresses the conductance for the
on-resonance case, while it enhances the conductance for the off-resonance one. With increasing impurity
strength, the tunnel magnetoresistance exhibits a maximum or minimum value for the on-resonance or
off-resonance case, respectively.

PACS. 72.25.-b Spin polarized transport – 73.63.-b Electronic transport in nanoscale materials and struc-
tures – 73.63.Fg Nanotubes

1 Introduction

The exciting discovery of carbon nanotubes [1] has stim-
ulated a lot of experimental and theoretical studies due
to their special geometrical and electronic properties [2].
Perfect carbon nanotubes are predicted to be either metal-
lic or semiconducting depending on their diameter and
chirality, which is uniquely determined by the chiral vec-
tor (n, m), where n and m are integers [3–5]. Research
on electron transport through hybrid device is presented
in which nanotubes are coupled to different materials. A
carbon-nanotube-based nanodevice is possible when finite
nanotubes can be efficiently fabricated and coupled to ex-
ternal leads. Carbon nanotubes are considered as promis-
ing spin mediators because of their ballistic conduction
nature and long spin scattering length [6–8]. Coherent
spin transport has been observed in multi-walled carbon
nanotube systems with Co electrodes [6–8]. The spin-
dependent transport of a single-walled carbon nanotube
contacted with Co electrodes has also been reported ex-
perimentally [9]. It has been found that carbon nanotubes
show quite a considerable giant magnetoresistance (GMR)
effect. Theoretical investigation of the transport proper-
ties of these hybrid nanotube devices is of great impor-
tance, not only for their basic scientific interest, but also
aiming at the design of novel spintronic devices. Carbon
nanotubes exhibit different kinds of features in quantum
transport. Some show single-electron tunneling behavior,
and some show Luttinger liquid behavior, depending on
the barrier contact with the external electrodes. Reso-
nant spin polarized currents in the ferromagnetic/carbon-
nanotube/ferromagnetic (FM/CNT/FM) system have
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been studied theoretically, where the single electron model
has been used [10]. Recently, spin transport in a one-
dimensional quantum wire (carbon nanotube) described
by Luttinger liquid theory has also been studied, where
strong electron-electron interaction has been included [11].

However, the impurity effects on the system are not
considered in most cases. Experimental and theoretical
studies have indicated that the electronic and transport
properties of carbon nanotubes can be substantially mod-
ified by point defects such as vacancies and substitutional
impurities [12–15]. Since carbon nanotubes are not strictly
one-dimensional (1D) materials but are quasi-1D ones, it
is expected that the impurity has unique effects on the
system. In this paper, impurity effects on spin-polarized
transport in the hybrid FM/CNT/FM system are theo-
retically studied. In such a system, the tunneling property
exhibits special behavior due to the detailed construction
and structure of the nanotubes. The energy of the finite-
sized carbon nanotubes is quantized both in the longitudi-
nal and transverse directions, which increases the tunnel-
ing channels. By using standard nonequilibrium Green’s
function (NGF) techniques [16–18], we have analyzed the
quantum transport properties of the FM/CNT/FM sys-
tem with impurities. Since the impurity changes the en-
ergy structure of the carbon nanotube, it has a great in-
fluence on the transport properties of the system.

2 Physical model and formula

The FM/CNT/FM system under consideration can be de-
scribed by the following Hamiltonian

H =
∑

α=L,R

Hα + HC + HT , (1)
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with

Hα =
∑

k,σ

εα,kσa†
α,kσaα,kσ (2)

HC =
∑

n,σ

(ε0n − evg)d†nσdnσ,

HT =
∑

n,kσσ′

[
tLa†

L,kσdnσ + h.c.
]

+
[
tR

(
cos

θ

2
a†

R,kσdnσ′ − σ sin
θ

2
a†

R,kσdnσ′

)
+ h.c.

]
,

where Hα describes the ferromagnetic leads and has al-
ready been diagonalized by the Bogliubov transforma-
tion [16]. HC is the Hamiltonian of the central conductor
with multiple discrete energy levels ε0n, since the finite-
length carbon nanotubes can be taken as quantum dots.
vg is the gate voltage which controls the energy levels
in the carbon nanotube. HT denotes the tunneling part
of the Hamiltonian, and tL,R are the hopping matrix.
It is noted that electron-electron interaction is impor-
tant and can result in Luttinger liquid behavior in car-
bon nanotubes [11]. Usually power law behavior occurs at
a relatively high temperature. The behavior of the sys-
tem considered here is at a very low temperature. Fur-
thermore, some transport properties in nanotubes can
be well explained by using a single-electron model de-
spite possibly important electron-electron interaction ef-
fects [10,13,14,19,20]. One can obtain the qualitative un-
derstanding of the experimental results observed from a
sing-electron picture of the impurity related effects on the
electron transport in a CNT. The reason may be that a
single-electron description is appropriate when the bias
voltage and the temperature are much lower than the
energy-level spacing of the experimental sample. Based
upon this consideration, the single-electron model is used
in this paper. The carbon nanotubes can be well described
by the tight-binding model with one π-electron per atom
as Htube =

∑
〈i,j〉,σ[−γ0c

†
iσcjσ+h.c.]+Uc†0c0, where i, j are

restricted to nearest-neighbor atoms, and the bond poten-
tial γ0 = 2.75 eV. This model is known to give a reasonable
and qualitative description of the electronic and transport
properties of carbon nanotubes [10,13,14,19,20]. In this
π-electron tight-binding model, the defect-free nanotubes
have complete electron-hole symmetry with their Fermi
levels at zero [13].

The impurity is defined by setting the site energy equal
to U at one of the sites of the unit cell, and various
strengths represent typical substitutional impurities or a
vacancy. For example, the strength U = 3, −5 and 106 can
simulate substitutional boron, nitrogen, and a vacancy re-
spectively, according to former tight-binding and ab inito
calculations [14,15]. The discrete energy levels ε0n can be
obtained by numerically diagonalizing Htube. The conduc-
tance and current can be calculated from standard NGF
techniques. The Green’s function can be expressed conve-

niently by

Gr
n(t, t′) =

(
Gr

n,↑↑(t, t
′) Gr

n,↑↓(t, t
′)

Gr
n,↓↑(t, t

′) Gr
n,↓↓(t, t

′)

)
, (3)

where Gr
n,σσ′ (t, t′) = −iθ(t − t′)〈{dn,σ(t), d†n,σ′(t′)}〉. By

means of the standard NGF technique, the current can be
derived as [10,16]

Iα =
ie

�

∫
dε

2π

∑

n

Trσ{Γα(ε)[G<
n (ε)

+ fα(ε)(Gr
n(ε) − Ga

n(ε))]}, (4)

where fα(ε) is the Fermi distribution function, and Γα(ε)
is the linewidth function. Under the wide-bandwidth ap-
proximation, the linewidth functions are independent of
the energy variables. Furthermore, the linewidth func-
tions are assumed to be independent of the energy levels.
This means that the transporting electrons in the leads
are equally coupled to different energy levels of the CNT.
Gr and G< are the retarded and correlated Green’s func-
tions, respectively. They can be calculated from the Dyson
equation Gr = [(gr)−1−Σr]−1 and the Keldysh equation
G< = GrΣ<Ga. gr is the retarded Green’s function of
the uncoupled nanotube. The selfenergies Σr and Σ< are
given as Σr = − i

2 (ΓL + ΓR) and Σ< = i(fLΓL + fRΓR).
The coupling between the CNT and the respective FM
leads are given by

ΓL =
(

ΓL↑(1 + PL) 0
0 ΓL↓(1 − PL)

)
, (5)

and

ΓR =
(

ΓR↑(1 + PR cos θ) ΓR↑↓PR sin θ
ΓR↓↑PR sin θ ΓR↓(1 − PR cos θ)

)
, (6)

where Pα is the polarization of the αth lead. For the case
of two same FM leads, we can take P = PL = PR, and
Γ↑(↓) = ΓL↑(↓) = ΓR↑(↓). Furthermore, we define two pa-
rameters as η = Γ↑/Γ↓ and Γ = Γ↑ + Γ↓. The linewidth
functions Γ are set as small values compared with the
energy-level spacing for the symmetric and weak-coupling
case. In the steady state, the total current is

I =
1
2
(IL − IR) =

e

h

∫
dεTeff (ε)[fL(ε) − fR(ε)], (7)

where
Teff =

∑

n

TrσΓLGr
n(ε)ΓRGa

n(ε). (8)

At zero temperature, the conductance can be obtained as:
G = e2

h Teff , and the tunnel magnetoresistance (TMR) can
be defined as TMR(θ) = 1 − G(θ)/G(0). The energy and
the nanotube length in the calculations are scaled by γ0

and the lattice constant a = 0.245 nm, respectively. The
conductance G is scaled by the unit of quantum conduc-
tance G0 = 2e2/h. The linewidth is set as Γ = 0.02γ0 for
the weak-coupling case. In the following, the numerical
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Fig. 1. The conductance G at θ = π/3 versus vg for (6,6)
nanotube of length L = 6 (a) and L = 7 (b) with different U .

results are discussed in detail for the (6,6) armchair nan-
otube. For armchair nanotubes, the length L is measured
in terms of unit cells: a unit cell is the repeat unit along the
armchair tube consisting of two carbon rings. The length
is selected as L = 6 or L = 7, which is shorter than the
spin coherence length [9]. η = 2 means that Γ↑ > Γ↓, and
then the tunneling probability of electrons from the spin
up subband to spin up subband is less than that from
down to down subbands.

3 Results and discussion

To clarify the impurity effects, the conductance
G(θ = π/3) vs. Vg at different U are plotted in Figure 1.
For nanotubes with U = 0, the conductance at the Fermi
level EF = 0 is about 0 for L = 6 and about 2G0 for
L = 7, respectively. Such a difference is a reflection of the
energy structure of the nanotubes with different length,
because the resonant states are close to the eigenstates
of the corresponding isolated nanotubes at small coupling
strength Γ . In general, one resonant state appears at the
Fermi level with L = 3N + 1 (N denoting the number
of the repeating carbon units), because kF = 2π/3 is
now an allowed wave vector. Large conductance exists at
the Fermi level due to the overlap of the π and π∗ bands
there [21]. For other lengths, kF is not an allowed wave
vector and no resonant state exists at the Fermi level,
thus G is much smaller due to the energy gap between
the resonant states. The impurity, such as substitutional
boron (nitrogen) or a vacancy, in the infinite-length car-
bon nanotube can lead to a quasibound state near the
lower or upper subbands [15]. Similarly, it can induce one
resonant state for finite-length carbon nanotubes. As seen
from Figure 1, one new resonant state appears below the
Fermi level for both L = 6 and L = 7 at U = 3. An
impurity with negative strength U = −5 has similar ef-
fects as the one with positive strength, except that the
resonant state induced by the impurity is above the Fermi
energy. The resonant state associated with positive or neg-
ative U is analogous to the acceptor or donor state in
semiconductors [15], which lead to a resonant state be-

Fig. 2. The conductance G versus θ for (6,6) nanotube of
length L = 6 (a) and L = 7 (b) with different U . (c) and (d)
are the corresponding TMR.

low or above the Fermi level, respectively. Since a single
impurity breaks the mirror symmetry planes containing
the tube axis, the original resonant state at EF = 0 for
L = 7 is split into two. One of the two states is still at
the Fermi level, and the other is above or below the Fermi
level according to positive or negative U . Furthermore, the
electron-hole symmetry in the perfect nanotubes within
the π-band approximation is also broken because the new
resonant state is near the Fermi level [13]. The position of
the resonant state induced by the impurity is related to
the impurity strength [14,15]. With the increase of U , the
position of the resonant state induced by the impurity ap-
proaches the Fermi level. For the single vacancy with very
strong U = 106, the resonant state induced by the impu-
rity is just located at the Fermi level for both L = 6 and
L = 7, which results in the recovery of the electron-hole
symmetry.

Figure 2 shows the dependence of G and TMR at the
Fermi level on the magnetic moment orientation θ with
different L and U . For both cases of L = 6 and L = 7, G
decreases with increasing θ, which is the well-known re-
sult for the TMR junctions at zero bias. G has the largest
(smallest) value when the magnetic moment of the left and
right leads are parallel (antiparallel). For nanotubes with
L = 6 and U = 0, G is very small and shows off-resonance
behaviour. However, G becomes larger if there exists an
impurity with U = 3 or U = −5 in the nanotube. The
stronger the impurity, the larger the conductance. The
system can even show on-resonance behavior at a very
strong U = 106 with conductance of about one G0. For
nanotubes with L = 7 and U = 0, G is large and shows
on-resonance behavior. Quite different from the case of
L = 6, G decreases to about one half of the original value
if there exists an impurity. The change hardly depends on
the impurity strength. As shown in Figures 2c and 2d, the
TMR has a minimum value in the parallel configuration
and a maximum value in the antiparallel configuration, re-
spectively. The θ dependence of TMR shows a clear spin-
valve effect, in agreement with the TMR experimental
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Fig. 3. The conductance G and TMR versus U for (6,6) nan-
otube of length L = 6 (a) and L = 7 (b).

results [6,7]. For the off-resonance case, the impurity with
weak strength has little influence on the TMR. Only the
impurity with very strong strength can decrease the TMR
distinctly because it induces a resonant state at the Fermi
level. For the on-resonance case, however, the impurity
has much less influence. The TMR increases only a little
with increasing U , because there still exists one resonant
state at the Fermi level despite the impurity.

The dependence of G at the Fermi level and TMR on
U is plotted in Figure 3 to clearly show the effects of the
impurity strength. It is seen that G increases with U and
finally reaches a constant of about one G0 for the nan-
otube with L = 6, because the resonant state induced by
the impurity approaches the Fermi level with increasing
U . While for the nanotube with L = 7, G decreases rapidly
from about two G0 to one G0 with U , because the orig-
inal two resonant states at the Fermi level are split and
only one is left there due to the impurity. It means that
whether the impurity increases or decreases the conduc-
tance depends on the nanotube length. For both cases, the
conductance at θ = 0 is greater than that at θ = π. The
TMR for the two cases are quite different as shown in Fig-
ures 3c and 3d. The TMR has a minimum value at U = 91
for L = 6, while it has a maximum value at U = 1.4 for
L = 7. From the definition TMR = 1.0 − G(π)/G(0), it
is known that a larger ratio G(π)/G(0) will result in a
smaller TMR.

In order to better understand the minimum and max-
imum values in the TMR, G(0) and G(π) at some typ-
ical U for L = 6 and L = 7 are plotted in Figure 4.
Although G(0) and G(π) at the Fermi level are very small
for the nanotube with L = 6 and U = 0, the small ratio
of G(π)/G(0) leads to the large TMR. With increasing
U , the peaks of G(0) and G(π) approach the Fermi level.
During this procedure, the difference between G(0) and
G(π) at the Fermi level first decreases and then increases,
resulting in a maximum of the ratio. Thus a minimum
of the TMR appears at U = 91. While for the nanotube
with L = 7 and U = 0, G(0) and G(π) are very large but
with a small difference between their values at the Fermi

Fig. 4. The conductance G at θ = 0 and θ = π versus vg

for (6,6) nanotube of length L = 6 (a) and L = 7 (b) with
different U .

level, resulting in a large ratio and small TMR. With in-
creasing U , the original resonant state is split into two
as mentioned above. During this procedure, the difference
between G(0) and G(π) at the Fermi level first increase
and then decrease, resulting in a minimum of the ratio.
Thus a maximum of the TMR appears at U = 1.4.

4 Conclusion

In summary, we have investigated impurity effects on
spin-polarized transport in the FM/CNT/FM system
theoretically. The system shows on-resonance behavior
for the perfect armchair carbon nanotube with length
L = 3N + 1 and shows off-resonance behavior with other
lengths. The impurity suppresses conductance for the on-
resonance case, while it enhances the conductance for the
off-resonance case. The impurity induces one new resonant
state whose position depends on the impurity strength.
When the impurity is near the Fermi level, the electron-
hole symmetry can be broken. While for very high im-
purity strengths, the resonant state is just located at the
Fermi level, which results in recovery of the electron-hole
symmetry. Furthermore, the impurity strength has a more
distinct influence on conductance for the on-resonance
case than for the off-resonance one. With increasing im-
purity strength, the TMR has a maximum value for the
on-resonance case, while it has a minimum value for the
off-resonance one, respectively.
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